Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 16(2): e13238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444256

RESUMO

Bacterial-algal interactions strongly influence marine ecosystems. Bacterial communities in cultured dinoflagellates of the family Symbiodiniaceae have been characterized by metagenomics. However, little is known about whole-genome analysis of marine bacteria associated with these dinoflagellates. We performed in silico analysis of four bacterial genomes from cultures of four dinoflagellates of the genera Symbiodinium, Breviolum, Cladocopium and Durusdinium. Comparative analysis showed that the former three contain the alphaproteobacterial family Parvibaculaceae and that the Durusdinium culture includes the family Sphingomonadaceae. There were no large genomic reductions in the alphaproteobacteria with genome sizes of 2.9-3.9 Mb, implying they are not obligate intracellular bacteria. Genomic annotations of three Parvibaculaceae detected the gene for diacetylchitobiose deacetylase (Dac), which may be involved in the degradation of dinoflagellate cell surfaces. They also had metabolic genes for dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen (N) cycle and cobalamin (vitamin B12 ) biosynthetic genes in the salvage pathway. Those three characters were not found in the Sphingomonadaceae genome. Predicted biosynthetic gene clusters for secondary metabolites indicated that the Parvibaculaceae likely produce the same secondary metabolites. Our study suggests that the Parvibaculaceae is a major resident of Symbiodiniaceae cultures with antibiotics.


Assuntos
Alphaproteobacteria , Dinoflagelados , Sphingomonadaceae , Ecossistema , Genoma Bacteriano , Antibacterianos , Vitamina B 12
2.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271267

RESUMO

Reef-building corals (Scleractinia, Anthozoa, Cnidaria) are the keystone organisms of coral reefs, which constitute the most diverse marine ecosystems. Since the first decoded coral genome reported in 2011, about 40 reference genomes are registered as of 2023. Comparative genomic analyses of coral genomes have revealed genomic characters that may underlie unique biological characteristics and coral diversification. These include existence of genes for biosynthesis of mycosporine-like amino acids, loss of an enzyme necessary for cysteine biosynthesis in family Acroporidae, and lineage-specific gene expansions of DMSP lyase-like genes in the genus Acropora. While symbiosis with endosymbiotic photosynthetic dinoflagellates is a common biological feature among reef-building corals, genes associated with the intricate symbiotic relationship encompass not only those shared by many coral species, but also genes that were uniquely duplicated in each coral lineage, suggesting diversified molecular mechanisms of coral-algal symbiosis. Coral genomic data have also enabled detection of hidden, complex population structures of corals, indicating the need for species-specific, local-scale, carefully considered conservation policies for effective maintenance of corals. Consequently, accumulating coral genomic data from a wide range of taxa and from individuals of a species not only promotes deeper understanding of coral reef biodiversity, but also promotes appropriate and effective coral reef conservation. Considering the diverse biological traits of different coral species and accurately understanding population structure and genetic diversity revealed by coral genomic analyses during coral reef restoration planning could enable us to "archive" coral reef environments that are nearly identical to natural coral reefs.


Assuntos
Antozoários , Recifes de Corais , Humanos , Animais , Antozoários/genética , Ecossistema , Genômica , Genoma , Simbiose/genética
3.
Commun Biol ; 6(1): 1027, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853100

RESUMO

Due to the ecological importance of mutualism between reef-building corals and symbiotic algae (Family Symbiodiniaceae), various transcriptomic studies on coral-algal symbiosis have been performed; however, molecular mechanisms, especially genes essential to initiate and maintain these symbioses remain unknown. We investigated transcriptomic responses of Acropora tenuis to inoculation with the native algal symbiont, Symbiodinium microadriaticum, during early life stages, and identified possible symbiosis-related genes. Genes involved in immune regulation, protection against oxidative stress, and metabolic interactions between partners are particularly important for symbiosis during Acropora early life stages. In addition, molecular phylogenetic analysis revealed that some possible symbiosis-related genes originated by gene duplication in the Acropora lineage, suggesting that gene duplication may have been the driving force to establish stable mutualism in Acropora, and that symbiotic molecular mechanisms may vary among coral lineages.


Assuntos
Antozoários , Simbiose , Animais , Simbiose/genética , Filogenia , Antozoários/genética , Transcriptoma , Perfilação da Expressão Gênica
4.
DNA Res ; 30(4)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37358253

RESUMO

Vestimentiferan tubeworms are representative members of deep-sea chemosynthetic ecosystems. In this study, we developed a draft genome and gene models and performed genomic and transcriptomic analyses of Lamellibrachia satsuma, the only vestimentiferan reported from the euphotic zone. The quality of the genome assembly and gene models is comparable to or higher than those of previously reported vestimentiferan tubeworms. Tissue-specific transcriptome sequencing revealed that Toll-like receptor genes and lineage-specific expanded bacteriolytic enzyme genes are highly expressed in the obturacular and vestimental regions, respectively, suggesting the importance of these tissues in defense against pathogens. On the other hand, globin subunit genes are expressed almost exclusively in the trunk region, supporting the hypothesis that the trophosome is the site of haemoglobin biosynthesis. Vestimentiferan-specific expanded gene families included chitinases, ion channels, and C-type lectins, suggesting the importance of these functions for vestimentiferans. C-type lectins in the trunk region, in particular, may be involved in recognition of pathogens, or in interactions between tubeworms and symbiotic bacteria. Our genomic and transcriptomic analyses enhance understanding of molecular mechanisms underlying the unique lifestyle of vestimentiferan tubeworms, particularly their obligate mutualism with chemosynthetic bacteria.


Assuntos
Ecossistema , Transcriptoma , Genoma , Bactérias/genética , Genômica , Simbiose
5.
Proc Biol Sci ; 290(1995): 20230026, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36987647

RESUMO

Coral reefs have the highest biodiversity of all marine ecosystems in tropical and subtropical oceans. However, scleractinian corals, keystone organisms of reef productivity, are facing a crisis due to climate change and anthropogenic activities. A broad survey of reef-building corals is essential for worldwide reef preservation. To this end, direct observations made by coral-specialist divers might be supported by another robust method. We improved a recently devised environmental DNA (eDNA) metabarcoding method to identify more than 43 scleractinian genera by sampling 2 l of surface seawater above reefs. Together with direct observations by divers, we assessed the utility of eDNA at 63 locations spanning approximately 250 km near Okinawa Island. Slopes of these islands are populated by diverse coral genera, whereas shallow 'moats' sustain fewer and less varied coral taxa. Major genera recorded by divers included Acropora, Pocillopora, Porites and Montipora, the presence of which was confirmed by eDNA analyses. In addition, eDNA identified more genera than direct observations and documented the presence of previously unrecorded species. This scleractinian coral-specific eDNA method promises to be a powerful tool to survey coral reefs broadly, deeply and robustly.


Assuntos
Antozoários , DNA Ambiental , Animais , Antozoários/genética , Ecossistema , Código de Barras de DNA Taxonômico , Recifes de Corais
6.
Mol Biol Evol ; 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36219871

RESUMO

Climate change threatens the survival of coral reefs on a global scale, primarily through mass bleaching and mortality as a result of marine heatwaves. While these short-term effects are clear, predicting the fate of coral reefs over the coming century is a major challenge. One way to understand the longer-term effects of rapid climate change is to examine the response of coral populations to past climate shifts. Coastal and shallow-water marine ecosystems such as coral reefs have been reshaped many times by sea-level changes during the Pleistocene, yet, few studies have directly linked this with its consequences on population demographics, dispersal, and adaptation. Here we use powerful analytical techniques, afforded by haplotype phased whole-genomes, to establish such links for the reef-building coral, Acropora digitifera. We show that three genetically distinct populations are present in northwestern Australia, and that their rapid divergence since the last glacial maximum (LGM) can be explained by a combination of founder-effects and restricted gene flow. Signatures of selective sweeps, too strong to be explained by demographic history, are present in all three populations and overlap with genes that show different patterns of functional enrichment between inshore and offshore habitats. In contrast to rapid divergence in the host, we find that photosymbiont communities are largely undifferentiated between corals from all three locations, spanning almost 1000 km, indicating that selection on host genes and not acquisition of novel symbionts, has been the primary driver of adaptation for this species in northwestern Australia.

7.
Mol Ecol ; 31(22): 5813-5830, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36168983

RESUMO

The endosymbiosis between most corals and their photosynthetic dinoflagellate partners begins early in the host life history, when corals are larvae or juvenile polyps. The capacity of coral larvae to buffer climate-induced stress while in the process of symbiont acquisition could come with physiological trade-offs that alter behaviour, development, settlement and survivorship. Here we examined the joint effects of thermal stress and symbiosis onset on colonization dynamics, survival, metamorphosis and host gene expression of Acropora digitifera larvae. We found that thermal stress decreased symbiont colonization of hosts by 50% and symbiont density by 98.5% over 2 weeks. Temperature and colonization also influenced larval survival and metamorphosis in an additive manner, where colonized larvae fared worse or prematurely metamorphosed more often than noncolonized larvae under thermal stress. Transcriptomic responses to colonization and thermal stress treatments were largely independent, while the interaction of these treatments revealed contrasting expression profiles of genes that function in the stress response, immunity, inflammation and cell cycle regulation. The combined treatment either cancelled or lowered the magnitude of expression of heat-stress responsive genes in the presence of symbionts, revealing a physiological cost to acquiring symbionts at the larval stage with elevated temperatures. In addition, host immune suppression, a hallmark of symbiosis onset under ambient temperature, turned to immune activation under heat stress. Thus, by integrating the physical environment and biotic pressures that mediate presettlement event in corals, our results suggest that colonization may hinder larval survival and recruitment under projected climate scenarios.


Assuntos
Antozoários , Dinoflagelados , Animais , Antozoários/fisiologia , Simbiose/genética , Recifes de Corais , Larva/genética , Dinoflagelados/genética , Resposta ao Choque Térmico/genética
8.
Mol Ecol ; 31(20): 5270-5284, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36082782

RESUMO

Understanding the structure and connectivity of coral populations is fundamental for developing marine conservation policies, especially in patchy environments such as archipelagos. The Nansei Islands, extending more than 1000 km in southwestern Japan, are characterized by high levels of biodiversity and endemism, supported by coral reefs, which make this region ideal for assessing genetic attributes of coral populations. In this study, we conducted population genomic analyses based on genome-wide, single-nucleotide polymorphisms (SNPs) of Acropora digitifera, a common species in the Nansei Islands. By merging newly obtained genome resequencing data with previously published data, we identified more than 4 million genome-wide SNPs in 303 colonies collected at 22 locations, with sequencing coverage ranging from 3.91× to 27.41×. While population structure analyses revealed genetic similarities between the southernmost and northernmost locations, separated by >1000 km, several subpopulations in intermediate locations suggested limited genetic admixture, indicating conflicting migration tendencies in the Nansei Islands. Although migration networks revealed a general tendency of northward migration along the Kuroshio Current, a substantial amount of southward migration was also detected, indicating important contributions of minor ocean currents to coral larval dispersal. Moreover, heterogeneity in the transition of effective population sizes among locations suggests different histories for individual subpopulations. The unexpected complexity of both past and present population dynamics in the Nansei Islands implies that heterogeneity of ocean currents and local environments, past and present, have influenced the population structure of this species, and similar unexpected population complexities may be expected for other marine species with similar reproductive modes.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Genômica , Ilhas , Japão
9.
PeerJ ; 10: e13114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722256

RESUMO

The density and diversity of Symbiodiniaceae associated with corals can be influenced by seasonal changes . This study provided the first annual investigation of Symbiodiniaceae density and diversity associated with Acropora humilis and Pocillopora cf. damicornis corals in the Gulf of Thailand using both zooxanthellae cell count and next-generation sequencing (ITS-1, ITS-2 regions) techniques, respectively. The results from this study indicated that zooxanthellae cell densities in both coral species differ significantly. The number of zooxanthellae was negatively correlated with the physical environment variable (light intensity). The diversity within A. humilis consisted of two genera, Cladocopium (Cspc_C3: 56.39%, C3w: 33.62%, C93type1: 4.42% and Cspf: 3.59%) and a small amount of Durusdinium (D1: 1.03%) whereas P. cf. damicornis was found to be 100% associated with Durusdinium (D1: 95.58%, D6: 1.01% and D10: 2.7%) suggesting that each coral species may select their appropriate genus/species of Symbiodiniaceae in response to local environmental stressors. The results of this study provided some information on the coral-Symbiodiniaceae relationship between seasons, which may be applied to predict the potential adaptation of corals in localized reef environments.


Assuntos
Antozoários , Dinoflagelados , Animais , Antozoários/fisiologia , Estações do Ano , Meio Ambiente , Aclimatação
10.
BMC Ecol Evol ; 22(1): 71, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624412

RESUMO

BACKGROUND: Scleractinian corals of the genus Montipora (Anthozoa, Cnidaria) possess some unusual biological traits, such as vertical transmission of algal symbionts; however, the genetic bases for those traits remain unknown. We performed extensive comparative genomic analyses among members of the family Acroporidae (Montipora, Acropora, and Astreopora) to explore genomic novelties that might explain unique biological traits of Montipora using improved genome assemblies and gene predictions for M. cactus, M. efflorescens and Astreopora myriophthalma. RESULTS: We obtained genomic data for the three species of comparable high quality to other published coral genomes. Comparative genomic analyses revealed that the gene families restricted to Montipora are significantly more numerous than those of Acropora and Astreopora, but their functions are largely unknown. The number of gene families specifically expanded in Montipora was much lower than the number specifically expanded in Acropora. In addition, we found that evolutionary rates of the Montipora-specific gene families were significantly higher than other gene families shared with Acropora and/or Astreopora. Of 40 gene families under positive selection (Ka/Ks ratio > 1) in Montipora, 30 were specifically detected in Montipora-specific gene families. Comparative transcriptomic analysis of early life stages of Montipora, which possesses maternally inherited symbionts, and Acropora, which lacks them, revealed that most gene families continuously expressed in Montipora, but not expressed in Acropora do not have orthologs in Acropora. Among the 30 Montipora-specific gene families under positive selection, 27 are expressed in early life stages. CONCLUSIONS: Lineage-specific gene families were important to establish the genus Montipora, particularly genes expressed throughout early life stages, which under positive selection, gave rise to biological traits unique to Montipora. Our findings highlight evolutionarily acquired genomic bases that may support symbiosis in these stony corals and provide novel insights into mechanisms of coral-algal symbiosis, the physiological foundation of coral reefs.


Assuntos
Antozoários , Animais , Antozoários/genética , Evolução Biológica , Recifes de Corais , Genômica , Simbiose/genética
11.
Sci Rep ; 12(1): 2854, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190599

RESUMO

Although numerous dinoflagellate species (Family Symbiodiniaceae) are present in coral reef environments, Acropora corals tend to select a single species, Symbiodinium microadriaticum, in early life stages, even though this species is rarely found in mature colonies. In order to identify molecular mechanisms involved in initial contact with native symbionts, we analyzed transcriptomic responses of Acropora tenuis larvae at 1, 3, 6, 12, and 24 h after their first contact with S. microadriaticum, as well as with non-native symbionts, including the non-symbiotic S. natans and the occasional symbiont, S. tridacnidorum. Some gene expression changes were detected in larvae inoculated with non-native symbionts at 1 h post-inoculation, but those returned to baseline levels afterward. In contrast, when larvae were exposed to native symbionts, we found that the number of differentially expressed genes gradually increased in relation to inoculation time. As a specific response to native symbionts, upregulation of pattern recognition receptor-like and transporter genes, and suppression of cellular function genes related to immunity and apoptosis, were exclusively observed. These findings indicate that coral larvae recognize differences between symbionts, and when the appropriate symbionts infect, they coordinate gene expression to establish stable mutualism.


Assuntos
Antozoários/genética , Antozoários/fisiologia , Dinoflagelados/fisiologia , Larva/genética , Larva/fisiologia , Simbiose/genética , Simbiose/fisiologia , Transcriptoma , Animais , Recifes de Corais , Ecossistema
12.
Genome Biol Evol ; 13(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878117

RESUMO

Massive corals of the genus Porites, common, keystone reef builders in the Indo-Pacific Ocean, are distinguished by their relative stress tolerance and longevity. In order to identify genetic bases of these attributes, we sequenced the complete genome of a massive coral, Porites australiensis. We developed a genome assembly and gene models of comparable quality to those of other coral genomes. Proteome analysis identified 60 Porites skeletal matrix protein genes, all of which show significant similarities to genes from other corals and even to those from a sea anemone, which has no skeleton. Nonetheless, 30% of its skeletal matrix proteins were unique to Porites and were not present in the skeletons of other corals. Comparative genomic analyses showed that genes widely conserved among other organisms are selectively expanded in Porites. Specifically, comparisons of transcriptomic responses of P. australiensis and Acropora digitifera, a stress-sensitive coral, reveal significant differences in regard to genes that respond to increased water temperature, and some of the genes expanded exclusively in Porites may account for the different thermal tolerances of these corals. Taken together, widely shared genes may have given rise to unique biological characteristics of Porites, massive skeletons and stress tolerance.


Assuntos
Antozoários , Anêmonas-do-Mar , Animais , Antozoários/genética , Recifes de Corais , Genoma , Genômica , Anêmonas-do-Mar/genética , Sequenciamento Completo do Genoma
13.
Zootaxa ; 5068(1): 81-98, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34810721

RESUMO

Two new species of Rhinogobius found in streams on central part of Palawan Island, Philippines are described. The two new species, Rhinogobius estrellae and Rhinogobius tandikan share unique transverse rows of sensory papillae on the cheek with Rhinogobius similis Gill, 1859, but differ from the latter in fin ray counts, arrangement of the scales, etc. The two new species are distinguished from each other by the pectoral-fin ray count, the longitudinal- and predorsal-scale counts, and colouration of the body. Rhinogobius estrellae new species and R. tandikan new species have been found allopatrically in a stream within Malatgao River system flowing into the Sulu Sea and in the Cayulo River flowing into the South China Sea, respectively. The Malatgao River system is the southernmost habitat of the genus Rhinogobius. Rhinogobius similis had been considered as the only member of the most basal lineage of this genus, but our mitochondrial genome analysis suggested that the two new species are additional members of this lineage. They are considered to be relicts of their common ancestor with R. similis, which probably had a wider distribution.


Assuntos
Perciformes , Animais , Peixes , Brânquias , Filipinas , Filogenia
14.
G3 (Bethesda) ; 11(11)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34515781

RESUMO

The kuruma shrimp Marsupenaeus japonicus (order Decapoda, family Penaeidae) is an economically important crustacean that occurs in shallow, warm seas across the Indo-Pacific. Here, using a combination of Illumina and Oxford Nanopore Technologies platforms, we produced a draft genome assembly of M. japonicus (1.70 Gbp; 18,210 scaffolds; scaffold N50 = 234.9 kbp; 34.38% GC, 93.4% BUSCO completeness) and a complete mitochondrial genome sequence (15,969 bp). As with other penaeid shrimp genomes, the M. japonicus genome is extremely rich in simple repeats, which occupies 27.4% of the assembly. A total of 26,381 protein-coding gene models (94.7% BUSCO completeness) were predicted, of which 18,005 genes (68.2%) were assigned functional description by at least one method. We also produced an Illumina-based transcriptome shotgun assembly (40,991 entries; 93.0% BUSCO completeness) and a PacBio Iso-Seq transcriptome assembly (25,415 entries; 67.5% BUSCO completeness). We envision that the M. japonicus genome and transcriptome assemblies will serve as useful resources for the basic research, fisheries management, and breeding programs of M. japonicus.


Assuntos
Penaeidae , Animais , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Penaeidae/genética , Análise de Sequência de DNA , Transcriptoma
16.
PLoS One ; 16(6): e0252514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34061893

RESUMO

Most corals acquire symbiodiniacean symbionts from the surrounding environment to initiate symbiosis. The cell densities of Symbiodiniaceae in the environment are usually low, and mechanisms may exist by which new coral generations attract suitable endosymbionts. Phototaxis of suitable symbiodiniacean cells toward green fluorescence in corals has been proposed as one such mechanism. In the present study, we observed the phototaxis action wavelength of various strains of Symbiodiniaceae and the fluorescence spectra of aposymbiotic Acropora tenuis larvae at the time of endosymbiont uptake. The phototaxis patterns varied among the Symbiodiniaceae species and "native" endosymbionts-commonly found in Acropora juveniles present in natural environments; that is, Symbiodinium microadriaticum was attracted to blue light rather than to green light. Another native endosymbiont, Durusdinium trenchii, showed no phototaxis specific to any wavelength. Although the larvae exhibited green and broad orange fluorescence under blue-violet excitation light, the maximum green fluorescence peak did not coincide with that of the phototaxis action spectrum of S. microadriaticum. Rather, around the peak wavelength of larval green fluorescence, this native endosymbiont showed slightly negative phototaxis, suggesting that the green fluorescence of A. tenuis larvae may not play a role in the initial attraction of native endosymbionts. Conversely, broad blue larval fluorescence under UV-A excitation covered the maximum phototaxis action wavelength of S. microadriaticum. We also conducted infection tests using native endosymbionts and aposymbiotic larvae under red LED light that does not excite visible larval fluorescence. Almost all larvae failed to acquire S. microadriaticum cells, whereas D. trenchii cells were acquired by larvae even under red illumination. Thus, attraction mechanisms other than visible fluorescence might exist, at least in the case of D. trenchii. Our results suggest that further investigation and discussion, not limited to green fluorescence, would be required to elucidate the initial attraction mechanisms.


Assuntos
Alveolados/fisiologia , Antozoários/fisiologia , Fluorescência , Larva/fisiologia , Simbiose/fisiologia , Animais , Recifes de Corais , Dinoflagelados/fisiologia , Fototaxia/fisiologia , Raios Ultravioleta
17.
Genes (Basel) ; 12(3)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799612

RESUMO

In addition to a purple, non-fluorescent chromoprotein (ChrP), fluorescent proteins (FPs) account for the vivid colors of corals, which occur in green (GFP), cyan (CFP), and red (RFP) FPs. To understand the evolution of the coral FP gene family, we examined the genomes of 15 Acropora species and three confamilial taxa. This genome-wide survey identified 219 FP genes. Molecular phylogeny revealed that the 15 Acropora species each have 9-18 FP genes, whereas the other acroporids examined have only two, suggesting a pronounced expansion of the FP genes in the genus Acropora. The data estimates of FP gene duplication suggest that the last common ancestor of the Acropora species that survived in the period of high sea surface temperature (Paleogene period) has already gained 16 FP genes. Different evolutionary histories of lineage-specific duplication and loss were discovered among GFP/CFPs, RFPs, and ChrPs. Synteny analysis revealed core GFP/CFP, RFP, and ChrP gene clusters, in which a tandem duplication of the FP genes was evident. The expansion and diversification of Acropora FPs may have contributed to the present-day richness of this genus.


Assuntos
Antozoários/genética , Evolução Molecular , Proteínas Luminescentes/genética , Animais
18.
Commun Biol ; 4(1): 463, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846549

RESUMO

Utilization and regulation of metals from seawater by marine organisms are important physiological processes. To better understand metal regulation, we searched the crown-of-thorns starfish genome for the divalent metal transporter (DMT) gene, a membrane protein responsible for uptake of divalent cations. We found two DMT-like sequences. One is an ortholog of vertebrate DMT, but the other is an unknown protein, which we named DMT-related protein (DMTRP). Functional analysis using a yeast expression system demonstrated that DMT transports various metals, like known DMTs, but DMTRP does not. In contrast, DMTRP reduced the intracellular concentration of some metals, especially zinc, suggesting its involvement in negative regulation of metal uptake. Phylogenetic distribution of the DMTRP gene in various metazoans, including sponges, protostomes, and deuterostomes, indicates that it originated early in metazoan evolution. However, the DMTRP gene is only retained in marine species, and its loss seems to have occurred independently in ecdysozoan and vertebrate lineages from which major freshwater and land animals appeared. DMTRP may be an evolutionary and ecological limitation, restricting organisms that possess it to marine habitats, whereas its loss may have allowed other organisms to invade freshwater and terrestrial habitats.


Assuntos
Distribuição Animal , Organismos Aquáticos/fisiologia , Cátions Bivalentes/química , Proteínas de Membrana Transportadoras/genética , Água do Mar , Estrelas-do-Mar/fisiologia , Sequência de Aminoácidos , Animais , Organismos Aquáticos/genética , Transporte Biológico , Ecossistema , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Alinhamento de Sequência , Estrelas-do-Mar/genética
19.
Sci Rep ; 11(1): 5992, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727571

RESUMO

Mussels, which occupy important positions in marine ecosystems, attach tightly to underwater substrates using a proteinaceous holdfast known as the byssus, which is tough, durable, and resistant to enzymatic degradation. Although various byssal proteins have been identified, the mechanisms by which it achieves such durability are unknown. Here we report comprehensive identification of genes involved in byssus formation through whole-genome and foot-specific transcriptomic analyses of the green mussel, Perna viridis. Interestingly, proteins encoded by highly expressed genes include proteinase inhibitors and defense proteins, including lysozyme and lectins, in addition to structural proteins and protein modification enzymes that probably catalyze polymerization and insolubilization. This assemblage of structural and protective molecules constitutes a multi-pronged strategy to render the byssus highly resistant to environmental insults.


Assuntos
Perfilação da Expressão Gênica , Genômica , Perna (Organismo)/genética , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Perna (Organismo)/classificação , Perna (Organismo)/fisiologia , Filogenia , Proteínas/metabolismo , Transcriptoma
20.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33621334

RESUMO

Corals of the family Acroporidae are key structural components of reefs that support the most diverse marine ecosystems. Due to increasing anthropogenic stresses, coral reefs are in decline. Along the coast of Okinawa, Japan, three different color morphs of Acropora tenuis have been recognized for decades. These include brown (N morph), yellow green (G), and purple (P) forms. The tips of axial polyps of each morph exhibit specific fluorescence spectra. This attribute is inherited asexually, and color morphs do not change seasonally. In Okinawa Prefecture, during the summer of 2017, N and P morphs experienced bleaching, in which many N morphs died. Dinoflagellates (Symbiodiniaceae) are essential partners of scleractinian corals, and photosynthetic activity of symbionts was reduced in N and P morphs. In contrast, G morphs successfully withstood the stress. Examination of the clade and type of Symbiodiniaceae indicated that the three color-morphs host similar sets of Clade-C symbionts, suggesting that beaching of N and P morphs is unlikely attributable to differences in the clade of Symbiodiniaceae the color morphs hosted. Fluorescent proteins play pivotal roles in physiological regulation of corals. Since the A. tenuis genome has been decoded, we identified five genes for green fluorescent proteins (GFPs), two for cyan fluorescent proteins (CFPs), three for red fluorescent proteins (RFPs), and seven genes for chromoprotein (ChrP). A summer survey of gene expression profiles under outdoor aquarium conditions demonstrated that (a) expression of CFP and REP was quite low during the summer in all three morphs, (b) P morphs expressed higher levels of ChrP than N and G morphs, (c) both N and G morphs expressed GFP more highly than P morphs, and (d) GFP expression in N morphs was reduced during summer whereas G morphs maintained high levels of GFP expression throughout the summer. Although further studies are required to understand the biological significance of these color morphs of A. tenuis, our results suggest that thermal stress resistance is modified by genetic mechanisms that coincidentally lead to diversification of color morphs of this coral.


Assuntos
Antozoários , Dinoflagelados , Animais , Recifes de Corais , Ecossistema , Estresse Fisiológico , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...